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Abstract
The effect of biaxial strain on the solubility of the common donor arsenic
and acceptor boron is calculated using spin-polarized local density functional
theory. The change in solubility with strain is considered in terms of
contributions from the change in total energy and Fermi energy with strain.
The solubility of boron is found to be enhanced by compressive biaxial strain
due to a reduction in the total energy of the small substitutional impurity and an
increase in the Fermi energy for compressive strain. The solubility of arsenic
is shown to be enhanced by tensile strain and this is due entirely to the change
in Fermi energy. For boron as well as arsenic the change in Fermi energy with
strain is shown to make the dominant contribution.

1. Introduction

The continual reduction in device feature size demands an increase in dopant concentration
along with a reduction in dopant diffusivity. Strain has the potential to control both dopant
solubility and diffusivity. It has been demonstrated that biaxial strain introduced by growing Si
epitaxially on SiGe can reduce the diffusivity of boron [1–3]. For arsenic the effect of biaxial
strain on diffusion is, to our knowledge, yet to be investigated. Even less is known about the
effect of strain on the solubility of dopants.

The effect of biaxial strain on the solubility of both the acceptor boron and donor arsenic has
not been studied experimentally but the change in equilibrium solubility of boron with biaxial
strain has been studied theoretically, by Sadigh et al [4]. Using local density functional theory
(LDFT) Sadigh et al predicted that the equilibrium solubility of boron should be enhanced by
∼150% for a −1% biaxial strain at 1000 ◦C (we adopt the convention that tensile strains are
positive and compressive ones negative). Sadigh et al showed that this enhancement is due
to two effects. The variation of the Fermi energy with strain alters the stability of charged
centres with respect to a neutral precipitate and the strain induced change in lattice constant
will lead to increased stability and hence equilibrium concentration of dopants that tend to
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induce a change in lattice constant of similar sense in unstrained material. As we confirm here,
both of these effects enhance the solubility of boron in compressively strained material but it
is the Fermi energy’s variation with strain that dominates. The effect of strain on the solubility
of the donor arsenic is considered here for the first time. Surprisingly (since arsenic has a
larger atomic radius than silicon) the lattice constant of silicon is found to contract slightly
with arsenic doping. This tends to increase the solubility of arsenic in compressively strained
material in competition with the change in Fermi energy which tends to increase its solubility
in tensile strained material. It is again the change in Fermi energy with strain which dominates
and we show here that the solubility of arsenic should be enhanced by tensile strain.

2. Method

Total energy calculations have been performed using the AIMPRO LDFT pseudopotential
code. Calculations were performed on supercells of various sizes but 64 atoms was found to
be large enough to deliver converged results. To support this, in most figures data points from
calculations performed using 216-atom supercells, which differ very little from those produced
using the smaller cell, are shown. The larger cell corresponds to a dopant concentration of
2 × 1020 cm−3. The Brillouin zone was sampled using a 2 × 2 × 2 (23) Monkhorst–Pack
(MP) sampling scheme [5]. The variation of the valence band maximum and conduction band
minimum with strain is critical to this discussion. In bulk silicon, which has a two-atom
unit cell, these points lay at the � point and along the �–X direction, close to the X point,
respectively. However, here we have used a 64-atom unit cell and so the band structure of
the primitive cell is folded onto itself several times resulting in a far more complicated band
structure in which the valence band maximum and conduction band minimum occur at several
points in the Brillouin zone. In this case a 23 MP sampling scheme gives converged values for
the energy of the valence band maximum and conduction band minimum, evidenced by there
being no difference in energy when the supercell size (and hence band folding) is increased
from 64 to 216 atoms (see figure 1) nor any significant difference when the k-point sampling
density is increased from 23 to 43 (not shown).

Since a charged defect that is periodically repeated in space results in an infinite Coulomb
energy, a compensating background charge is applied to the supercell. However, quadrupole
and higher order multipole interactions between supercells result in an error in the calculated
total energy. There are schemes for correcting the total energy for these interactions but, as
will be explained below, such corrections were not necessary here.

The effect of biaxial strain on the equilibrium solubility limit (ESL) is calculated following
the method described by Sadigh et al ([4] and references therein), summarized below.

Inserting an impurity into an unstrained, perfect crystal leads to changes in the lattice
constant and consequently induces strain in an epitaxial layer. The lattice parameter change is
linear in dopant concentration and corresponds to a strain of −0.002 for boron concentrations
around 4 × 1020 cm−3 [6, 7]. The biaxial strain that results from growing silicon on some
lattice mismatched material such as Six Ge1−x is typically much larger than this and so we
define the reference lattice constant to be the calculated lattice parameter of pure bulk silicon,
a0, which is found to be 5.39 Å and can be compared with an experimental value of 5.43 Å. For
arsenic, we shall show that the change of lattice parameter with doping is very much smaller.

The effect of biaxial strain on pure silicon can now be found by imposing an in-plane,
strained lattice parameter on a (001) slab of bulk silicon and relaxing the free cell parameter
along the perpendicular [001] direction. Then the impurity atom is placed in this relaxed
supercell and the atomic positions are relaxed for fixed lattice vectors. Re-relaxing the
[001] cell parameter after the impurity was placed in the supercell had negligible effect on
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Figure 1. The energy of the valence band maximum, conduction band minimum and mid-gap
energy as a function of tensile (positive) and compressive (negative) biaxial strain εapp. Crosses
joined by a solid line show the valence band maximum, crosses joined by a dashed line show the
conduction band minimum and crosses joined by a dotted line show the mid-gap energy level (Emid)
calculated using a 64-atom supercell. Using a 216-atom supercell the valence band maximum,
conduction band minimum and Emid have values shown by empty diamonds, triangles and squares
respectively. Note the independence of these energies of supercell size.
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Figure 2. The variation of the relaxed [001] lattice constant with the biaxial strain. Data points
are the calculated values while the line is a plot of the equation εrel = −2(C12/C11)εapp given by
elasticity theory.

the [001] cell parameter (<0.1 %) and total energy of the system (<0.5 meV). Figure 2
shows the calculated relaxed [001] lattice parameter in a 64-atom cell as a function of biaxial
strain εapp = ε[100] = ε[010]. The strain along [001] is εrel = ε[001] = (a[001] − a0)/a0
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and its variation is in excellent agreement with the expression derived from elasticity theory
εrel = −2(C12/C11)εapp shown by the line in figure 2, where C is the elastic stiffness tensor
and C12 and C11 are the experimental elastic constants 6.39 × 1010 and 16.57 × 1010 N m−2

respectively [8].
The ESL of an isolated, charged substitutional dopant Xs is given in terms of its formation

energy by

[Xs] = A exp

(−Ef

kT

)
(1)

where k is Boltzmann’s constant and T temperature. The value of A depends on the number
of possible sites available for the substitutional dopant. This is taken to be constant since the
change in the density of lattice sites is negligible for the small strains considered here. Ef , the
formation energy, is given by

Ef(εapp) = ET(εapp) + q EF(εapp) −
∑

s

nsµs (2)

where ET is the total energy of the ionized substitutional dopant in a supercell, q is its charge
state, EF is the Fermi energy and ns is the number of atoms of species s in the supercell which
have chemical potential µs . The chemical potentials of both boron and arsenic, µB and µAs,
are related to the energy of a dopant atom in its precipitate and are assumed to be independent
of strain since it is likely that the structure and hence energy of a dopant atom within the
precipitate would not depend upon the precise lattice constant of the bulk material. On the
other hand, the chemical potential of silicon, µSi varies with strain (εapp) and is taken to be the
total energy per atom of an n-atom supercell of biaxially strained pure silicon relaxed in the
[001] direction (µSi(εapp) = ESi

T (εapp)/n).
The Fermi energy at high temperature is given by [9]

EF(εapp) = Emid(εapp) ± kT

[
ln

∣∣∣∣ [Xs]

ni

∣∣∣∣ + ln

∣∣∣∣1

2

(
1 +

√
1 +

(
2ni

[Xs]

)2)∣∣∣∣
]

(3)

where Emid is the energy midway between the valence band maximum and conduction band
minimum in bulk silicon subject to biaxial strain εapp. The second term in equation (3) is
positive for donors and negative for acceptors. The value of Emid is obtained from a Kohn–
Sham band structure which gives a gap of 0.50 eV for unstrained material. The effect of
quasi-particle corrections on the change in band gap with strain has been considered in [4]
where it is shown to be negligible. This implies that the infamous underestimation of the
band gap within local density functional theory is effectively independent of strain for small
biaxial strains. Hence LDFT is able to predict the change in band gap with strain and thus the
underestimation in the magnitude of the band gap does not affect this problem as will become
apparent. The density of intrinsic carriers, ni(εapp) in equation (3), is given by [9]

ni(T, εapp) = √
Nv Nc exp

(
− Egap(εapp)

2kT

)
(4)

where Nv and Nc are the effective densities of states in the valence and conduction bands
respectively and Egap is the size of the silicon (Kohn–Sham) band gap for the given strain.
Again we stress that it is the change in band gap with strain that is important to this problem as
will be explained below. We will take Nv and Nc to be constant with strain and temperature.
The variation of the product of Nv and Nc with strain and temperature has been considered by
Sadigh et al [4] and is found to make no significant differences to the results.
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Figure 3. ni(εapp)/ni(0) calculated using 64- and 216-atom supercells for two different
temperatures. The crosses joined by a solid line and the plus signs joined by a dashed line are
values calculated using 64-atom supercells for T = 800 and 1200 K respectively. Empty and filled
triangles are the values calculated in 216-atom supercells for T = 800 and 1200 K respectively
demonstrating the convergence with respect to cell size.

Taking the doping level into account through the Fermi energy, the ESL of the charged
substitutional dopant is then given by the above equations. In the case where ni � [Xs], these
equations are easily solved to give

[Xs] =
√

Ani(T, εapp) exp

(−(ET(εapp) − ∑
s nsµs) − q Emid(εapp)

2kT

)
. (5)

Of interest here is the enhancement in the ESL with strain and for this the chemical potential
of the dopant and Nv as well as Nc are not required, nor are the absolute values of Emid or Egap.
The enhancement in the ESL, E(εapp, T ), is defined as ([Xs](εapp) − [Xs](0))/[Xs](0). This
quantity can be more accurately calculated than the absolute ESL since many terms which
are not easily calculated are cancelled. This is true of the artificial additional terms to the
total energy which result from multipole interactions between charged supercells, since the
enhancement depends on the change in total energy of a supercell containing the charged
dopant with strain. Since this strain is small the supercells are almost identical and hence
any multipole terms resulting from the computational treatment will be almost identical and
therefore cancel.

3. Results

Figure 1 shows that Emid(εapp) decreases almost linearly with biaxial strain εapp. Since the
Fermi energy is approximately equal to Emid (equation (3)) this result implies that if the other
terms are constant, a positively charged donor’s solubility is enhanced by tensile strain while a
negatively charged acceptor’s solubility is enhanced by compressive strain. The enhancement
to the equilibrium solubility is also proportional to

√
ni(εapp)/ni(0). The dependence of

ni(εapp)/ni(0) upon strain is shown in figure 3 for two different temperatures. The number of
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Figure 4. The Kohn–Sham band gap of silicon evaluated for 64-and 216-atom supercells as a
function of biaxial strain εapp. The solid line with crosses shows values calculated using 64-atom
supercells while triangles show the values calculated using 216-atom supercells.

intrinsic carriers is increased for both negative and positive strains due to the narrowing of the
band gap with strain of either sense (figure 4). Thus a study of strained, pure silicon alone
predicts that the change in Fermi energy with strain will enhance the solubility of positively
charged defects under tensile strain and negatively charged defects under compressive strain.

3.1. Boron

We now consider the effect of strain on the ESL of the acceptor boron. We first check
whether the theory is able to account for the change in lattice parameter with boron doping
concentration. This is done by first relaxing the contents, and then the volume, of a neutral 64-
atom supercell containing a single substitutional boron atom. This yields a lattice parameter
a0(B) of 5.36 Å. The variation of this parameter is, according to Vegard’s law, linear in
boron concentration and this variation can be written as (a0(B) − a0)/a0 = β[B] where β is
calculated to be −5.99×10−24 cm3 in good agreement with the value −5.2×10−24 cm3 found
experimentally [6, 7]. The four silicon–boron bonds had lengths of 2.047 Å.

We now consider the effect of biaxial strain on a 64-atom cell containing a single
substitutional boron atom. The calculated differences between the four silicon–boron bond
lengths are found to be negligible, the strain being accommodated by an adjustment in bond
angles. The silicon–boron bond length is shown in table 1 for different strains.

The variation of the formation energy of substitutional boron with strain has two main
components: the variation in total energy and the variation in Fermi energy. Figure 5 shows the
formation energy of B−

s as a function of εapp for a fixed Fermi energy (which demonstrates the
variation in formation energy due to only the variation in total energy) and for a Fermi energy
that is allowed to vary with strain. The formation energy in unstrained material is set to zero.
This figure illustrates two points. The solubility of boron would be enhanced by compressive
strain due to the change in total energy with strain alone. Including contributions to the change
in formation energy from the change in Fermi energy with strain greatly increases this trend
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Figure 5. The formation energy of substitutional boron including and excluding the change in
Fermi energy with strain. Plus signs joined by a dashed line and crosses joined by a solid line show
values calculated using 64-atom supercells for the case where EF is constant and where EF varies
with strain respectively. Empty triangles and filled triangles show the values where EF is constant
and where EF varies with strain respectively calculated with 216-atom supercells to demonstrate
convergence.

Table 1. The impurity bond length dependence upon biaxial strain. For comparison, the bond
lengths in equivalently strained bulk silicon are also shown. The unit of length is the ångström.
Note that all four bond lengths are equal and the strain is accommodated by a change in bond angle.

εapp Bulk B As

−0.01 2.324 2.050 2.387
−0.005 2.329 2.055 2.391

0 2.333 2.059 2.396
0.005 2.338 2.064 2.401
0.01 2.343 2.069 2.406

by reducing the formation energy for compressive strain and increasing it for tensile strain.
This is seen in figure 6 which shows the enhancement to the equilibrium solubility limit for
two different temperatures for the case where the Fermi energy is fixed (so the variation in
stability comes entirely from the change in total energy) and the case where the Fermi energy
varies with strain. This clearly illustrates that the change in Fermi energy with strain increases
the predicted ESL by an order of magnitude.

3.2. Arsenic

The same analysis for is now performed for arsenic. A single neutral arsenic atom in a 216-
atom supercell results in a relaxed lattice parameter a0(As) of 5.388 Å. This gives a β value of
−0.06 × 10−24 cm3 in good agreement with the small negative value −0.1 × 10−24 cm3 found
experimentally [6, 11]. Using a smaller 64-atom supercell it is found that the lattice constant is
identical to that of bulk material (i.e. β = 0). Details of the arsenic–silicon bond lengths have
been found using EXAFS [10]. It is reported that, relative to the equivalent distance in pure
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Figure 6. The enhancement to the equilibrium solubility of boron with strain for two different
temperatures (triangles correspond to 800 K and diamonds correspond to 1200 K). To illustrate
the influence of the change in Fermi energy the enhancement is shown for a Fermi energy set to
be constant with strain (dashed lines and empty symbols) and for the value of EF calculated as a
function of strain (solid lines and filled symbols).

Table 2. A comparison of the change in first-, second-and third-nearest neighbour (NN) distances
between Si and Si:As. EXAFS [10] and the present calculations agree that there is a dilation around
the As atoms which drops of sharply and in fact leads to a smaller lattice constant than bulk Si.
The theoretical values were calculated using volume relaxed, 216-atom supercells. Lengths are in
units of ångströms.

EXAFS LDFT

NN Bulk Si:As Increase (%) Bulk Si:As Increase (%)

1 2.351 2.43 3.36 2.333 2.397 2.71
2 3.840 3.87 0.78 3.810 3.822 0.32
3 4.502 4.53 0.62 4.468 4.479 0.25
4 5.389 5.397 0.15
5 5.872 5.875 0.05
6 6.600 6.602 0.04
7 7.000 7.003 0.05
8 7.620 7.619 −0.02

silicon, the distance between the arsenic atom and its first-nearest neighbour is ∼3% larger,
decreasing to 0.78% larger and 0.62% larger for the second-and third-nearest neighbours and
presumably becoming negative at larger distances to result in the measured overall reduction
in lattice constant. Our calculations agree well with these EXAFS data as shown in table 2 and
we predict that the distance between arsenic and its ∼8th-nearest neighbour is indeed shorter
than the distance between equivalent crystal sites in bulk silicon.

Next we discuss the effect of biaxial strain on the ionized dopant. The arsenic–silicon bond
lengths in biaxially strained material are given in table 1. The calculated change in formation
energy due to the change in total energy and the combination of the change in total energy and
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Figure 7. The formation energy of substitutional arsenic including and excluding the change in
Fermi energy with strain. Plus signs joined by a dashed line and crosses joined by a solid line show
values calculated using 64-atom supercells for the case where EF is constant and where EF varies
with strain respectively. Empty triangles and filled triangles show the values where EF is constant
and where EF varies with strain respectively calculated with 216-atom supercells to demonstrate
convergence.
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Figure 8. The enhancement to the equilibrium solubility of arsenic with strain for two different
temperatures (triangles correspond to 800 K and diamonds correspond to 1200 K). To illustrate
the influence of the change in Fermi energy the enhancement is shown for a Fermi energy set to
be constant with strain (dashed lines and empty symbols) and for the value of EF calculated as a
function of strain (solid lines and filled symbols).

change in Fermi energy with strain is shown for arsenic in figure 7. The enhancement to the
ESL is shown in figure 8. The effect of the Fermi energy is far more critical for arsenic. When
the strain dependence of the Fermi energy is neglected the solubility of arsenic increases for
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compressive strains, despite the fact that the arsenic atom has a larger atomic radius than a
silicon atom. This is due to the fact that arsenic actually leads to a reduction in the overall
silicon lattice constant as discussed above and hence compressive strain leads to a reduction
in the total energy of the substitutional donor. It is the change in Fermi energy with strain that
results in an increase in solubility of arsenic with tensile strain.

4. Discussion and conclusions

In agreement with previous theory [4] the equilibrium solubility limit of boron is significantly
increased by compressive biaxial strain. The increased stability of the substitutional acceptor
under compressive strain is due partly to a reduction in total energy but largely due to the
increase in Fermi energy. Due to its opposite charge state, the change in Fermi energy with
strain strongly increases the stability of arsenic in material under tensile biaxial strain. This
enhancement is reduced by the fact that due to a negative value of β for arsenic, the total
energy of substitutional arsenic is increased by tensile strain. The overall result is a small but
significant enhancement to the solubility of substitutional arsenic strain in material subject to
tensile biaxial strain. It is important to note that the change in Fermi energy with strain has
been shown to play the dominant role in the determination of the solubility for both impurities
in biaxially strained material.
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